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Abstract—This paper proposes an improved epsilon constraint
handling method embedded in the multi-objective evolutionary
algorithm based on decomposition (MOEA/D) to solve con-
strained multi-objective optimization problems (CMOPs). More
specifically, it dynamically adjusts the epsilon level, which is a
critical parameter in the epsilon constraint method, according
to the feasible ratio of solutions in the current population. In
order to verify the effect of the improved epsilon constraint
handling method, three algorithms - MOEA/D-CDP, MOEA/D-
Epsilon, and MOEA/D-IEpsilon (MOEA/D with the improved
epsilon constraint handling mechanism) are tested on nine
CMOPs (CMOP1-CMOP9). The comprehensive experimental
results indicate that the proposed epsilon constraint handling
method is very effective on the performance of both convergence
and diversity.

I. INTRODUCTION

In the real world, most engineering optimization problems
can be formulated as CMOPs [1] which involve more than
one conflicting objective to be optimized and a various of con-
straints to be met simultaneously. Without loss of generality,
a CMOP is defined as follows [2]:

minimize F (x) = (f1(x), . . . , fm(x))
T (1)

subject to gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

x ∈ Rn

where F (x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm is a m-
dimensional objective vector, gi(x) ≥ 0 defines the i-th of

q inequality constraints, and hj(x) = 0 defines the j-th of
p equality constraints. x ∈ Rn is a n-dimensional decision
vector. In order to evaluate the constraints violation of a
solution in a CMOP, an overall constraint violation is adopted
which can be defined as follows:

φ(x) =

q∑
i=1

|min(gi(x), 0)|+
p∑
j=1

|hj(x)| (2)

If φ(x) equals to zero, the solution x is feasible, otherwise it
is infeasible. For two feasible solutions x1 and x2, x1 is said
to dominate x2 if fi(x1) ≤ fi(x

2) for each i ∈ {1, ...,m}
and for fj(x1) ≤ fj(x

2) at least one j ∈ {1, ...,m}, denoted
as x1 ≺ x2. For a feasible solution x∗, if there is no other
feasible solution dominating x∗, then x∗ is called a Pareto
optimal solution. The set of all Pareto optimal solutions is
called a Pareto Set (PS). Mapping the PS into the objective
space, a set of non-dominated objective vectors is obtained,
and this set is called a Pareto Front (PF).

Evolutionary algorithms (EAs) are promising methods to
solve CMOPs due to the population-based property. They
have the ability to achieve a PF in a single running. In
this paper, constrained multi-objective evolutionary algo-
rithms (CMOEAs) are adopted to solve CMOPs. In general,
CMOEAs consist of two parts - optimizing the multiple
objectives and handling the constraints.

In terms of optimizing the multiple objectives, the existing
MOEAs can be broadly classified into three categories. They
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are dominance-based, indicator-based and decomposition-
based MOEAs. In the dominance-based methods, typical ap-
proaches include NSGA-II [3], SPEA-II [4], and PAES-II
[5]. In the indicator-based category, representative methods
consist of IBEA [6], R2-IBEA [7] and HypE [8]. In the
decomposition-based methods, a multi-objective problem is
decomposed into many single objective subproblems, and they
are optimized simultaneously in a collaborative way. Represen-
tative methods of this type include IMMOGLS [9], MOEA/D
[10], [11]. Currently, MOEA/D is a popular algorithm and
wins the first place in the CEC2009 MOEA competition. In
this paper, MOEA/D is adopted as a MOEA framework to
integrate the constraint handling methods to solve CMOPs.

In terms of handling constraints, there are four different
types of constraint handling mechanisms in the heuristic
algorithms [12]. They are penalty, repair, separatist and hybrid
approaches. In the penalty methods, a constrained optimization
problem is transformed into an unconstrained one by adding
its constraints to the objectives with predefined or adaptive
weights which indicate a preference between the constraints
and the objectives. Typical methods of this type include static
[13], [14], dynamic [15], adaptive [16], [17], self-adaptive
[18], annealing-based [19], co-evolutionary-based [20], [21]
and death penalty functions [22]. In the repair approaches,
a infeasible solution is converted to a feasible one by using
a repair operator [23]. In the separatist approaches, objectives
and constraints are handled separately. Representative methods
of this type consist of multi-objective-based [24], [25], [26],
co-evolutionary-based [27], constrained-domination principle
(CDP) [28], stochastic ranking (SR) [29], infeasible driven
evolutionary algorithm (IDEA) [30] and epsilon constraint
methods [31]. In the hybrid approaches, representative meth-
ods include Lagrangian multipliers [32], [33], constrained
optimization by random evolution [34], fuzzy logic [35],
immune system [36], cultural algorithms [37] and ant colony
optimization [38] etc.

Currently, the epsilon constraint handling method is very
popular. Takahama [39] combines it with the differential evolu-
tion (DE) and wins the CEC 2010 competition on constrained
single objective optimization problems (CSOPs). The epsilon
constraint handling technique was originally proposed to solve
CSOPs, and had been successfully used in solving CSOPs.
However, for CMOPs, this approach needs to be further
studied. In this paper, an improved epsilon constraint handling
method is proposed to solve CMOPs.

The rest of this paper is organized as follows. Section II
introduces the improved epsilon constraint handling approach.
Section III introduces the test problems and the framework
of MOEA/D with the improved epsilon constraint handling
mechanism. Section IV gives the comprehensive experimental
results of MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-
IEpsilon, and Section V concludes the paper.

II. IMPROVED EPSILON CONSTRAINT HANDLING
APPROACH

In this section, the epsilon constraint handling method
and the improved epsilon constraint handling method are
described.

A. Epsilon Level Comparison

In the epsilon constraint handling approach [40], the re-
laxation of the constraints is controlled by the epsilon level
ε. The epsilon level comparison for CMOPs is defined as an
order relation on the set of (F (x), φ(x)). For two solutions
x1 and x2, their objective values and constraint violation are
F (x1), F (x2) and φ(x1), φ(x2) respectively. Then, for any ε
satisfying ε ≥ 0, the epsilon level comparison ≺ε is defined
as follows:

(F (x1), φ(x1)) ≺ε (F (x2), φ(x2))
m

F (x1) ≺ F (x2), if φ(x1), φ(x2) ≤ ε
F (x1) ≺ F (x2), if φ(x1) = φ(x2)

φ(x1) < φ(x2), otherwise
(3)

In Equation (3), the epsilon level comparison is equivalent
to the CDP constraint handling method [28] when ε equals to
zero. In the case of ε = ∞, the epsilon level comparison is
same to the non-dominated ranking for the objectives.

According to Equation (2), a CMOP defined in Equation
(1) can be transformed as follows:

minimize F (x) = (f1(x), . . . , fm(x))
T (4)

subject to φ(x) = 0

The epsilon level comparison is equivalent to transforming
the CMOP in Equation (4) into the following problem:

minimize F (x) = (f1(x), . . . , fm(x))
T (5)

subject to φ(x) ≤ ε

It is worth noting that the PS and PF of the CMOP in
Equation (4) can be obtained by converging ε to zero in
Equation (5).

B. Epsilon Level Setting

In the epsilon constraint handling method, the setting of ε is
quite critical. In [40], a control of the ε parameter is suggested
as follows:

ε(0) = φ(xθ) (6)

ε(G) =

{
ε(0)(1− G

Tc
)cp, 0 < G < Tc

0, G ≥ Tc
(7)

where xθ is the top θ-th individual of the current popula-
tion which is sorted by the overall constraint violation in a
descending order, and cp is a parameter to control the speed
of reducing relaxation of constraints. The ε level is updated



until the generation counter G reaches the control generation
Tc. When the generation counter G exceeds Tc, the ε level is
set to zero.

C. Improved Epsilon Level Setting

According to Equation (6), the ε(0) is set to the constraint
violation of the top θ-th individual in the initial population.
However, if ε(0) equals to zero, then the epsilon level ε(G)
identically equals to zero according to Equation (7). This
hinders a CMOEA to explore the infeasible regions in the
search space. In order to avoid this issue, a new mechanism
to set the initial value of ε(0) is suggested as follows:

ε(0) =

{
φ(xθ), if φ(xθ) > 0 and G = 0

∞, if φ(xθ) = 0 and G = 0
(8)

ε(0) = φkmax, if ε(0) =∞ (9)
where k = argmin

G
G, subject to rGf < 1

where rGf is the feasible ratio (the number of feasible solutions
divided by the population size) of solutions in the G-th
generation. φkmax is the maximum constraint violation in the
k-th generation. In Equation (8), if φ(xθ) is greater than
zero in the initial population (G = 0), the ε(0) is set to
φ(xθ) as done in Equation (6), otherwise the ε(0) is set to
∞ in order to increase the probability of searching in the
infeasible regions. When the feasible ratio of solutions in the
working population is less than one, which means there are
some infeasible solutions in the current population, the ε(0)
is updated to φkmax according to Equation (9). This can help
to better control the speed of reducing the ε(G).

In terms of setting the ε(G), it decreases gradually along
with the generation counter G as mentioned in Equation (7).
In the case of G ≥ Tc, the ε(G) equals to zero. However,
this epsilon setting method may not suitable for solving the
CMOP which has large infeasible regions near its PF as shown
in Figure 1.
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Fig. 1. Illustration of a CMOP with large infeasible regions near its PF

To overcome the shortage of the ε(G) setting in Equation
(7), an improved approach of setting ε(G) is suggested as
follows:

ε(G) =


ε(0)(1− G

Tc
)cp, if rf < α and G < Tc

(1 + τ)φmax, if rf ≥ α and G < Tc

0, G ≥ Tc
(10)

where rf is the feasible ratio in the current population, α
and τ are two factors and belong to [0, 1]. φmax is the
maximum constraint violation found so far. The parameter α
is introduced to control the searching preference between the
feasible and infeasible regions for a CMOEA. If rf < α,
the setting of ε(G) is same to that in Equation (7). In this
circumstance, a CMOEA mainly focuses on searching in the
feasible regions. If rf ≥ α, the ε(G) is set to (1 + τ)φmax,
which strengths the searching preference in the infeasible
regions. This epsilon level setting method has the ability to
increase the ε(G), which can solve the CMOPs with large
infeasible regions near their PFs.

III. TEST PROBLEMS AND THE PROPOSED ALGORITHM

In this section, the CMOPs used to evaluate the CMOEAs
are first listed. Then, the improved epsilon constraint han-
dling approach embedded in the framework of MOEA/D is
described.

A. Test Instances

In [41], a set of difficulty controllable and scalable CMOPs
(CMOP1-CMOP8) are constructed. In this paper, the eight
CMOPs are adopted to evaluate the performance of the im-
proved epsilon constraint approach. In Section II, a CMOP
with large infeasible regions near its PF is proposed. It
is named CMOP9 and added to the test set. The detailed
definition of CMOP9 is stated as follows:

minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1−
√
x1 + g2(x)

subject to ck(x) = ((f1 − pk)cosθ − (f2 − qk)sinθ)2/a2k
+((f1 − pk)sinθ + (f2 − qk)cosθ)2/b2k ≥ 0.1

where g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))2 (11)

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
p = [0.8, 1.4, 1.9], q = [0.8, 1.4, 1.9]

a = [1.5, 1.0, 1.0], b = [4.0, 6.0, 8.0]

θ = −0.25π, n = 30, xj ∈ [0, 1], k = 1, 2, 3.

B. The Improved CMOEA

In order to facilitate the description, the improved epsilon
constraint handling method embedded in MOEA/D is called
MOEA/D-IEpsilon for short. The pseudo-codes of MOEA/D-
IEpsilon are listed in Algorithm I.



Algorithm I: MOEA/D-IEpsilon
Input: A CMOP;
Output: A set of non-dominated feasible solutions NS;
Step 1: Initialization:
a) Generate an initial population P = {x1, . . . , xN}.
b) Initialize ε(0) according to Equation (8), set G = 0.
c) Calculate neighbors of xi, denoted as Si, set nr .
Step 2: Population update
For i = 1, . . . , N , do

a) Generate a new individual yi using DE.
b) Perform a polynomial mutation on yi.
c) Update the ideal point z∗.
d) Update of Solutions: Set c = 0, ε = ε(G), and then do the

following:
1) If c = nr or Si is empty, continue. Otherwise, select an

index j from S randomly.
2) If (g(yi|λj , z∗), φ(yi)) ≺ε (g(xj |λj , z∗), φ(xj)), then set

xj = yi and c = c+ 1.
3) Remove j from Si and go to 1).

End
Step 3:Update NS and epsilon level
a) Set U = NS ∪ P , select at most N feasible solutions from U to

construct NP according the non-dominated ranking.
b) Update ε(0) according to Equation (9), if ε(0) =∞.
c) Set ε(G) according to Equation (10).
Step 4: Termination If stopping criteria are satisfied, output NS.
Otherwise, go to Step 2 and set G += 1.

In Algorithm I, the input is a CMOP and the output
is a set of non-dominated feasible solutions. The algorithm
MOEA/D-IEpsilon mainly consists of four steps. In the first
step, the working population, the epsilon level ε(0) and the
parameters in MOEA/D are initialized. In the second step,
a new solution is generated by using a differential evolution
operator. A polynomial mutation is performed on the newly
generated solution, and a repair operator is adopted to fix
the solution. In the replacement stage, the newly generated
solution is compared with its neighbors based on the epsilon
level comparison. In the third step, a non-dominated ranking
operator is executed on the feasible solutions in the union
of the external archive and the working population. Solutions
in the first rank of the union is selected into the external
archive. If the number of solutions in the first rank is great
than the population size, the crowding distance is calculated
to select the top N feasible solutions into the external archive.
Then, the epsilon level ε(0) and ε(G) are updated according
to Equation (9) and Equation (10) respectively. In Step 4, if
stopping criteria are met, output the non-dominated solutions,
otherwise, go to Step 2.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

To verify the effect of the improved epsilon constraint
handling approach, three CMOEAs (i.e., MOEA/D-CDP,
MOEA/D-Epsilon and MOEA/D-IEpsilon) are adopted in the
experiments. The parameters of these three CMOEAs are listed
as follows:

1) Setting for reproduction operators: The mutation proba-
bility Pm = 1/n (n is the number of decision variables)

and its distribution index is set to be 20. For the DE
operator, we set CR = 1.0 and f = 0.5 .

2) Population size: N = 300.
3) The number of runnings and the stopping condition:

Each algorithm runs 30 times independently on each
test problem. The algorithm stops until 300 000 function
evaluations.

4) Neighborhood size: T = 20.
5) Probability used to select in the neighborhood: δ = 0.9.
6) The maximal number of solutions replaced by a child:

nr = 2.
7) The parameters in the improved epsilon constraint han-

dling approach are defined as follow: α = 0.8, Tc = 800,
cp = 2, τ = 0.1 and θ = 0.2NI . NI is the number of
infeasible solutions in the initial population.

B. Performance Metrics

To compare the performance of MOEA/D-CDP, MOEA/D-
Epsilon and MOEA/D-IEpsilon, two popular metrics - inverted
generation distance (IGD)[42] and relative hypervolume in-
dicator (I−H ) [43] are employed. The definitions of IGD and
I−H are stated as follows:
• Inverted Generational Distance (IGD):

IGD(P ∗, A) =

∑
y∗∈P∗

d(y∗,A)

|P∗|

d(y∗, A) = min
y∈A
{
√∑m

i=1(y
∗
i − yi)2}

(12)

where P ∗ is a set of representative points in the PF, A
is an approximate PF achieved by algorithms. IGD metric
represents the distance between P ∗ and A, the smaller value
of IGD indicates the better performance of both convergence
and diversity.
• Relative Hypervolume Indicator (I−H ):

I−H(A,P ∗, R) = IH(P ∗, R)− IH(A,R)

IH(P ∗, R) = V olv∈P∗(v)

IH(A,R) = V olv∈A(v)

(13)

where IH(P ∗, R) is a volume enclosed by P ∗ and the ref-
erence vector R = (R1, . . . , Rm). IH(A,R) is the volume
enclosed by A and R. I−H simultaneously considers the distri-
bution of the obtained solutions set - A and its vicinity to the
PF. For CMOP1-CMOP2 and CMOP7-CMOP9, the reference
point R is set to (1.2, 1.2)T . For CMOP3-CMOP6, R is set
to (1.6, 1.6)T . The smaller value of I−H represents the better
performance of both diversity and convergence. It is worth
noting that if a MOEA can not get any feasible solutions, the
IGD and IH are set to one.

C. Experimental Results and Discussions

Figure 2 shows the final non-dominated solutions with
the best IGD metric in 30 independent runnings by using
MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-IEpsilon. It
can be observed that MOEA/D-IEpsilon is much better than
MOEA/D-CDP and MOEA/D-Epsilon on CMOP3-CMOP7,



and not bad on the rest of CMOPs. This demonstrates the
effect of the improved epsilon handling method.

Table I and Table II show the best, median and worst
IGD and I−H values obtained by MOEA/D-CDP, MOEA/D-
Epsilon and MOEA/D-IEpsilon, respectively. In these two ta-
bles, MOEA/D-IEpsilon is significantly better than MOEA/D-
CDP and MOEA/D-Epsilon on all of test problems. Therefore,
the proposed method MOEA/D-IEpsilon has superiority over
MOEA/D-CDP and MOEA/D-Epsilon on CMOP1-CMOP9.

The box plots of IGD and I−H metrics of CMOP1-CMOP9
on MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-IEpsilon
are shown in Figure 3. For CMOP3-CMOP5 and CMOP7-
CMOP9, the performance of MOEA/D-IEpsilon is very stable
and significantly better than MOEA/D-CDP and MOEA/D-
Epsilon. For the rest of test problems, MOEA/D-IEpsilon is
also the best, which further verify that the improved epsilon
constraint handling approach is effective.

For CMOP3-CMOP6, which have large portion of infeasible
regions in the search space, MOEA/D-CDP has only found
a part of the PFs. The reason is that the CDP constraint
handling method always prefers the feasible regions to the
infeasible regions. When MOEA/D-CDP gets some feasible
solutions, they quickly replaces the infeasible solutions, and
the diversity of the working population is bad. Because the
feasible region is very narrowed, it is difficult for MOEA/D-
CDP to expand its search regions. However, the epsilon con-
straint handling method allows a CMOEA to search infeasible
regions, which helps to improve the diversity of the working
population. This is the reason that MOEA/D-Epsilon is better
than MOEA/D-CDP on CMOP3-CMOP6. Comparing with
MOEA/D-Epsilon, MOEA/D-IEpsion increases the epsilon
level when the feasible ratio is greater than a given thresh-
old, which further strengths the searching preference to the
infeasible regions. Therefore, MOEA/D-IEpsilon is better than
MOEA/D-CDP and MOEA/D-Epsilon on the performance of
diversity.

For CMOP7 and CMOP9, they have large infeasible regions
near their PFs. As the epsilon level of MOEA/D-Epsilon
is decreased gradually, it is difficult for MOEA/D-Epsilon
to expand the infeasible regions on CMOP7 and CMOP9.
MOEA/D-CDP is equivalent to MOEA/D-Epsilon when the
epsilon level equals to zero. Therefore, it is difficult for
MOEA/D-CDP and MOEA/D-Epsilon to solve CMOPs with
large infeasible regions near their PFs. However, the epsilon
level of MOEA/D-IEpsilon is increased when the ratio of
feasible solutions is greater than a threshold, which helps
MOEA/D-IEpsilon to cross the large infeasible regions. That is
why MOEA/D-IEpsilon is significantly better than MOEA/D-
CDP and MOEA/D-Epsilon on the performance of conver-
gence on CMOP7 and CMOP9.

V. CONCLUSION

This paper proposed an improved epsilon constraint
handling approach embedded in MOEA/D to solve CMOPs.
The proposed method MOEA/D-IEpsilon along with

TABLE I
BEST, MEDIAN AND WORST IGD VALUES OBTAINED BY MOEA/D-CDP,

MOEA/D-EPSILON AND MOEA/D-IEPSILON ON CMOP1-CMOP9.
BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FONT

Problem MOEA/D-CDP MOEA/D-Epsilon MOEA/D-IEpsilon

CMOP1
2.51E-03 2.31E-03 1.48E-03
3.88E-03 3.77E-03 2.91E-03
4.89E-03 5.28E-03 4.13E-03

CMOP2
1.79E-03 1.67E-03 1.25E-03
1.97E-03 2.04E-03 1.34E-03
2.42E-03 2.38E-03 1.50E-03

CMOP3
3.69E-02 4.72E-03 2.40E-03
2.32E-01 3.68E-02 2.84E-03
3.05E-01 1.05E-01 4.28E-03

CMOP4
1.15E-01 6.71E-03 2.29E-03
2.15E-01 1.86E-02 2.52E-03
2.67E-01 1.36E-01 3.45E-03

CMOP5
1.73E-01 2.76E-02 2.35E-03
2.73E-01 7.01E-02 3.03E-03
3.32E-01 1.24E-01 2.08E-02

CMOP6
1.63E-01 2.71E-02 1.87E-03
2.64E-01 4.31E-02 3.66E-03
3.13E-01 8.96E-02 4.24E-02

CMOP7
6.59E-02 6.62E-02 9.01E-04
7.03E-02 6.92E-02 1.02E-03
2.31E-01 2.32E-01 1.15E-03

CMOP8
1.68E-03 1.73E-03 1.21E-03
2.06E-03 1.91E-03 1.36E-03
2.46E-03 2.38E-03 1.48E-03

CMOP9
2.22E-03 2.17E-03 2.07E-03
9.78E-01 9.80E-01 2.27E-03
9.80E-01 9.80E-01 2.75E-03

TABLE II
BEST, MEDIAN AND WORST I−H VALUES OBTAINED BY MOEA/D-CDP,

MOEA/D-EPSILON AND MOEA/D-IEPSILON ON CMOP1-CMOP9.
BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FONT

Problem MOEA/D-CDP MOEA/D-Epsilon MOEA/D-IEpsilon

CMOP1
5.39E-04 4.55E-04 1.16E-04
1.20E-03 9.88E-04 3.57E-04
1.92E-03 2.01E-03 7.02E-04

CMOP2
2.09E-04 1.49E-04 -5.19E-05
4.49E-04 4.31E-04 8.53E-05
7.76E-04 7.32E-04 3.84E-04

CMOP3
5.90E-02 3.09E-03 1.74E-03
2.36E-01 3.15E-02 2.22E-03
2.91E-01 1.06E-01 3.21E-03

CMOP4
1.53E-01 7.41E-03 1.43E-03
2.89E-01 2.24E-02 1.76E-03
3.45E-01 1.73E-01 3.32E-03

CMOP5
1.84E-01 2.47E-02 4.00E-03
2.51E-01 6.29E-02 5.91E-03
2.81E-01 1.26E-01 1.32E-02

CMOP6
1.97E-01 3.10E-02 3.13E-03
3.05E-01 5.02E-02 7.13E-03
3.66E-01 9.09E-02 3.74E-02

CMOP7
1.91E-01 1.91E-01 -1.60E-04
1.93E-01 1.92E-01 2.11E-04
2.90E-01 2.90E-01 5.97E-04

CMOP8
1.32E-04 1.42E-04 -2.76E-05
5.79E-04 3.88E-04 1.34E-04
1.45E-03 6.04E-04 4.10E-04

CMOP9
1.05E-03 7.92E-04 4.26E-04
1.10E+00 1.10E+00 7.04E-04
1.10E+00 1.10E+00 2.34E-03
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Fig. 2. The final populations with the best IGD metric in 30 independent runnings by using MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-IEpsilon
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Fig. 3. The box plots of IGD and I−H metrics of CMOP1-CMOP9 on MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-IEpsilon

MOEA/D-CDP and MOEA/D-Epsilon are tested on CMOP1-
CMOP9. The comprehensive experimental results verified
that MOEA/D-IEpsilon is significantly better than MOEA/D-
CDP and MOEA/D-Epsilon on the performance of both
convergence and diversity. Unlike the original epsilon
constraint method with a decreasing epsilon level, the
proposed method increases the epsilon level if the feasible
ratio of solutions in the current population is greater than a
threshold defined by users. It can be concluded that increasing
the searching preference in infeasible regions can help to
enhance the performance of a CMOEA. The further work
includes testing the MOEA/D-IEpsilon on some real-world
optimization problems and comparing it with some other
state-of-the-art CMOEAs.
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